ASSESSMENT OF GREENLAND TURBOT STOCK IN THE EASTERN BERING SEA AND ALEUTIAN ISLANDS James N. Ianelli, Carolina Minte-Vera, Thomas K. Wilderbuer, and Terrance M. Sample U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center 7600 Sand Point Way NE, Seattle, WA 98115-0070 # **Summary** Relative to last year's assessment, the following changes have been made in the current assessment. #### New input data - 1. 2001 fishery total catch and catch-at-length by gear type, - 2. EBS slope survey 2002 biomass and length composition estimate (last slope survey occurred in 1991). - 3. EBS shelf survey 2002 biomass and length composition estimate. - 4. Aleutian Islands survey 2002 biomass and length composition estimate (data not currently used in the main assessment), - 5. An aggregated longline survey data index for the EBS and AI, and #### Assessment model This year we continued research on developing an alternative model. Part of this work involved incorporating additional data published in Russian reports since there is substantial evidence that this stock is shared between the US and Russian EEZ. Exploration the stock synthesis model that has been used since 1993 consisted of evaluating the relative weight placed on the main tuning index, the EBS slope survey, since a new survey was available from 2002. #### Assessment results The value of $B_{40\%}$ was estimated by using the mean estimated recruitment for the period 1978-1998. The results indicate that the long-term average female spawning biomass is around 54,400 tons. The current estimate of the year 2003 female spawning biomass is about 67,800 t. These values are considerably lower than last year's estimates of 80,000 for $B_{40\%}$ and 132,000 tons for 2002 spawning biomass. This is due to the fact that there is a new slope survey included in this year's assessment (and that greater emphasis was placed on fitting this survey value). Given the current model structure and general uncertainty about stock structure, we recommend an ABC based on the recent 5-year average fishing mortality **5,880 mt.** We feel that this is justified based on the projections for the anticipated further declines and the continued lack of apparent recruitment. Our recommendation for overfishing, based on the adjusted $F_{35\%}$ rate is **17,800 t** corresponding to an full-selection F of 0.32. ## Introduction Greenland turbot (*Reinhardtius hippoglossoides*) within the US 200-mile exclusive economic zone are mainly distributed in the eastern Bering Sea (EBS) and Aleutian Islands region. Juveniles are believed to spend the first 3 or 4 years of their lives on the continental shelf and then move to the continental slope (Alton et al. 1988). Juveniles are absent in the Aleutian Islands regions, suggesting that the population in the Aleutians originates from the EBS or elsewhere. In this assessment we assume that the Greenland turbot found in the two regions represent a single management stock. Prior to 1985 Greenland turbot and arrowtooth flounder were managed together. Since then, the Council has recognized the need for separate management quotas given large differences in the market value between these species. Furthermore, the abundance trends for these two species are clearly distinct (e.g., Wilderbuer and Sample 1992). The American Fisheries Society uses "Greenland halibut" as the common name for *Reinhardtius hippoglossoides* instead of Greenland turbot. To avoid confusion with the Pacific halibut, *Hippoglossus stenolepis*, we retain the common name of Greenland turbot which is also the "official" market name in the US and Canada (AFS 1991). For further background on this assessment and the methods used refer to Ianelli and Wilderbuer (1995). # 4.1. Catch history and fishery data Catches of Greenland turbot and arrowtooth flounder were not reported separately during the 1960s. During that period, combined catches of the two species ranged from 10,000 to 58,000 t annually and averaged 33,700 t. Beginning in the 1970s the fishery for Greenland turbot intensified with catches of this species reaching a peak from 1972 to 1976 of between 63,000 t and 78,000 t annually (Fig. 4.1). Catches declined after implementation of the MFCMA in 1977, but were still relatively high in 1980-83 with an annual range of 48,000 to 57,000 t (Table 4.1). Since 1983, however, trawl harvests declined steadily to a low of 7,100 t in 1988 before increasing slightly to 8,822 t in 1989 and 9,619 t in 1990. This overall decline is due mainly to catch restrictions placed on the fishery because of declining recruitment. For the period 1992–1997, the Council set the TAC's to 7,000 t as an added conservation measure due to concerns about apparent low levels of recruitment in the past several years. This has resulted in primarily bycatch-only fisheries. The distribution of the longline fishery (in 2000) was mainly concentrated along the slope regions while the trawl fishery catch was patchier and had highest catch rates in the southeastern area (Fig. 4.2). Table 4.1. Catches of Greenland turbot by gear type (including discards) since implementation of the MFCMA. | Trawl | Longline | Total | |--------|--|--| | | & Pot | | | 29,722 | 439 | 30,161 | | 39,560 | 2,629 | 42,189 | | 38,401 | 3,008 | 41,409 | | 48,689 | 3,863 | 52,552 | | 53,298 | 4,023 | 57,321 | | 52,090 | 32 | 52,122 | | 47,529 | 29 | 47,558 | | 23,107 | 13 | 23,120 | | 14,690 | 41 | 14,731 | | 9,864 | 0 | 9,864 | | 9,551 | 34 | 9,585 | | 6,827 | 281 | 7,108 | | 8,293 | 529 | 8,822 | | 10,869 | 577 | 11,446 | | 9,289 | 814 | 10,103 | | 1,559 | 1,130 | 2,689 | | 1,142 | 7,306 | 8,448 | | 6,427 | 3,843 | 10,272 | | 3,978 | 4,214 | 8,193 | | 1,653 | 4,900 | 6,553 | | 1,209 | 6,327 | 7,536 | | 1,829 | 7,295 | 9,124 | | 1,710 | 3,917 | 5,627 | | 1,905 | 4,736 | 6,641 | | 2,116 | 3,127 | 5,243 | | 900 | 1,600 | 2,500 | | | 38,401
48,689
53,298
52,090
47,529
23,107
14,690
9,864
9,551
6,827
8,293
10,869
9,289
1,559
1,142
6,427
3,978
1,653
1,209
1,829
1,710
1,905
2,116
900 | 29,722 439 39,560 2,629 38,401 3,008 48,689 3,863 53,298 4,023 52,090 32 47,529 29 23,107 13 14,690 41 9,864 0 9,551 34 6,827 281 8,293 529 10,869 577 9,289 814 1,559 1,130 1,142 7,306 6,427 3,843 3,978 4,214 1,653 4,900 1,209 6,327 1,829 7,295 1,710 3,917 1,905 4,736 2,116 3,127 900 1,600 | ^{*} Estimate as of 10/14/02, source: NMFS Regional Office, Juneau, AK Catch information prior to 1990 included only the tonnage of Greenland turbot retained onboard Bering Sea fishing vessels or processed onshore (as reported by PacFIN). However, Greenland turbot are also discarded overboard in other trawl target fisheries. The following estimates of discards from 1990-98 were estimated from a combination of discard rates observed from vessels with 100% observer sampling and NMFS regional office weekly processor reports. | Year | Trawl | Longline | Total | |------|-------|----------|---------| | 1990 | na | Na | 1,250 t | | 1991 | na | Na | 3,427 t | | 1992 | na | Na | 1,013 t | | 1993 | na | Na | 1,333 t | | 1994 | 854 t | 1,858 t | 2,711 t | | 1995 | 535 t | 2,087 t | 2,622 t | | 1996 | 354 t | 1,042 t | 1,396 t | | 1997 | 289 t | 1,533 t | 1,822 t | | 1998 | 140 t | 661 t | 801 t | Additional information on 1999-2001 retained and discarded catch of Greenland turbot indicates that a large fraction of discards occurred due to the sablefish fishery (Table 4.2). The proportion of discards attributed to the sablefish fishery increased from 17% in 1999 to about 40% in 2001. Table 4.2. Estimates of discarded and retained Greenland turbot based on NMFS Blend estimates by fishery, 1999-2001. | | | 1999 | | | 2000 | | | 2001 | | |---------------|-----------|----------|-------|-----------|----------|-------|-----------|----------|-------| | Fishery | Discarded | Retained | Total | Discarded | Retained | Total | Discarded | Retained | Total | | G.Turbot | 227 | 4,009 | 4,236 | 177 | 4,798 | 4,975 | 89 | 2,724 | 2,813 | | Flathead sole | 56 | 363 | 420 | 67 | 510 | 577 | 138 | 514 | 652 | | Sablefish | 120 | 179 | 300 | 253 | 192 | 446 | 373 | 167 | 540 | | ATF | 76 | 131 | 207 | 93 | 262 | 355 | 182 | 201 | 383 | | P. Cod | 50 | 180 | 230 | 108 | 130 | 238 | 63 | 185 | 247 | | Rockfish | 2 | 25 | 27 | 1 | 39 | 39 | 30 | 431 | 461 | | A. Mackerel | 42 | 112 | 154 | 43 | 161 | 204 | 21 | 50 | 72 | | Others | 156 | 127 | 283 | 48 | 92 | 139 | 43 | 92 | 135 | | Total | 729 | 5,128 | 5,857 | 790 | 6,183 | 6,973 | 940 | 4,364 | 5,304 | ### Catch and catch per unit effort (CPUE) The catch data were used as presented above for both the longline and trawl fisheries. The early catches included Greenland turbot and arrowtooth flounder together. To separate them, we assumed that the ratio of the two species for the years 1960-64 was the same as the mean ratio caught by USSR vessels from 1965-69. A CPUE index derived in Alton et al. (1988) for the years 1978-84 for the trawl fishery was used as an index of abundance in the
stock synthesis model: | Year | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | |------------|------|------|------|------|------|------|------| | CPUE Index | 291 | 316 | 449 | 409 | 235 | 195 | 335 | Ianelli et al. (1999) presented a preliminary examination of recent catch rate data based on the NMFS NORPAC observer database. Due to the short seasons for the directed fishery in recent years we concluded that these data are not reliable as an index of abundance. #### Size and age composition No age composition information is available from the fisheries or surveys. Survey size-at-age data were available from 1975, 1979-1982. These data are used to establish the length-age (and variability in length-at-age) within the stock assessment model. Extensive length frequency compositions have been collected by the NMFS observer program from the period 1980 to 1991. The length composition data from the trawl and longline fishery and the expected values from the assessment model are presented in previous assessments. This information is used in the assessment model and adds to our ability to estimate size-specific selectivity patterns in addition to year-class variability. # 4.2. Resource Surveys Abundance estimates for juvenile Greenland turbot on the EBS shelf are provided annually by AFSC trawl surveys. The older juveniles and adults on the slope were assessed every third year from 1979-1991 (also in 1981) during U.S.-Japan cooperative surveys. The slope surveys were conducted by Japanese shore-based (Hokuten) trawlers chartered by the Japan Fisheries Agency until 1985. In 1988, the NOAA R/V Miller Freeman surveyed the resources on the EBS slope region. In this same year, chartered Japanese vessels performed side-by-side trawl experiments with the Miller Freeman for calibration purposes. Due to limited vessel time, the area and number of stations sampled by the Miller Freeman was less than sampled by the Japanese trawlers in most previous years. The Miller Freeman sampled 133 stations over a depth interval of 200-800 m while during earlier slope surveys the Japanese vessels usually sampled 200-300 stations over a depth interval of 200-1,000 m (Table 4.3). We believe that the U.S. and Japanese trawl slope-surveys under-estimate the actual biomass of Greenland turbot when swept-area expansions are made. Thus, we treat these as indices of relative abundance. That is, the species appears to extend beyond the area of the survey and that the ability to tend bottom in the deeper waters may be compromised. The AFSC instituted a bottom trawl survey of the upper continental slope of the eastern Bering Sea in 2002. This survey will be conducted biennially. The benthic resources of the eastern Bering Sea continental slope have been explored with bottom trawls in prior years (1979-1991). The 2002 survey will initiate a time series of trawl survey results that will provide information on abundance trends and trends in the biological condition of the groundfish and invertebrate resources in that habitat. A new slope survey was conducted during the summer of 2002. Based on the 2000 pilot survey, a Poly Noreastern trawl with a mud-sweep footrope was selected for the 2002 survey. The stations were randomly selected within depth and area strata. A total of 137 sampling locations were completed with Greenland turbot catch rates shown in Fig. 4.3. The combined estimates from the shelf and slope indicate a decline in EBS abundance for the 4 years of observations that were available during 1979-1985. After 1985, the slope biomass estimates (and the 1991 Aleutian Islands estimate) are not comparable to previous years due to differences in depths sampled. The interpretation of the CPUE data from these surveys, however, suggests a moderate decline in abundance between 1985 and 1991. The average shelf-survey biomass estimate during the last 9 years (1993-2001) is 29,968 tons with a declining trend during this period. The following table summarizes the sampling that has occurred for the EBS bottom trawl survey data since 1982: | Year | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | |-------------|------|------|------|------|------|------|------|------|------|------| | No. hauls | 329 | 354 | 355 | 353 | 354 | 342 | 353 | 353 | 352 | 351 | | No. Lengths | 969 | 951 | 536 | 196 | 195 | 82 | 200 | 183 | 232 | 360 | | Year | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | No. hauls | 336 | 355 | 355 | 356 | 355 | 356 | 355 | 353 | 352 | 355 | | No. Lengths | 440 | 400 | 398 | 313 | 297 | 197 | 93 | 207 | 248 | 274 | Biomass estimates from U.S.-Japan cooperative surveys in the Aleutian Islands region suggest an increasing trend from 48,700 t in 1980 to 76,560 t in 1986 (the 1991 estimate is not directly comparable). Relative to the trend in the EBS, the apparent increased abundance in the Aleutian Island Region may be due to migration of older fish from the EBS. In 1997 NMFS AFSC conducted a triennial bottom-trawl survey of the Aleutian Islands region using methods described in Harrison (1993). The preliminary areaswept estimate of biomass from this survey is 32,027 tons. This compares with a value of 29,106 tons estimated from the 1994 survey. Examining the distribution of where the survey found Greenland turbot in the Aleutian Islands reveals similar patterns between the 1994 and 1997 surveys. Previously, the eastern Bering Sea Cooperative longline survey was incorporated for use as a relative abundance index. This survey covered a larger portion of the slope and shelf area than the present longline survey. A bootstrap resampling scheme was used to provide confidence bounds on the annual relative abundance estimates. We used the median values of the bootstrap estimates as our relative population index. This index represents numerical abundance whereas the shelf and slope surveys represent biomass indices. We continue to work on methods of incorporating recent domestic longline surveys which, beginning in 1996, have been extended into the Bering Sea and part of the Aleutian Islands (in alternate years). This new sampling area represents a smaller region than in past but shows that about 25% of the population along the slope regions is found within the northeast (NE) and southeast (SE) portions of the Aleutian Islands compared to the abundances along the slope of the EBS: | Relative | | |----------------|------| | Population No. | Year | | (RPN) | | | Area | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | |--------------|--------|--------|--------|--------|--------|--------|--------| | Bering 4 | | 11,729 | | 13,072 | | 16,082 | | | Bering 3 | | 6,172 | | 6,156 | | 5,005 | | | Bering 2 | | 27,936 | | 33,848 | | 24,766 | | | Bering 1 | | 13,491 | | 10,068 | | 4,788 | | | NE Aleutians | 23,133 | | 17,120 | ., | 12,987 | , | 10,942 | | SE Aleutians | 2,142 | | 1,806 | | 1,201 | | 1,397 | | Bering Sea | | 59,328 | | 63,144 | | 50,641 | | | Aleutians | 25,275 | | 17,930 | | 14,188 | | 12,339 | | Combined | 88,022 | 83,226 | 62,441 | 88,579 | 49,411 | 71,040 | 42,970 | The combined time series shown above (1996-2002) was used as a relative abundance index (Fig. 4.4). It was computed by taking the average RPN from 1996-2002 for both areas and computing the average proportion. The combined RPN in each year (RPN_t^c) was thus computed as: $$RPN_{t}^{c} = I_{t}^{AI} \frac{RPN_{t}^{AI}}{p^{AI}} + I_{t}^{EBS} \frac{RPN_{t}^{EBS}}{p^{EBS}}$$ where I_t^{AI} and I_t^{EBS} are indicator function (0 or 1) depending on whether a survey occurred in either the Aleutian Islands or EBS, respectively. The average proportions are given here by each area as: p^{AI} and p^{EBS} . Note that each year data are added to this time series, the estimate of the combined index changes (slightly) in all years. Table 4.3. Survey estimates of Greenland turbot biomass for the Eastern Bering Sea shelf and slope areas and for the Aleutian Islands region, 1975-2002. | Aleutians | Bering Sea | Eastern | | | |---------------|----------------|---------|---------|------| | | Shelf and | | | | | | Slope Combined | Slope | Shelf | Year | | | | | 126,700 | 1975 | | | 348,600 | 123,000 | 225,600 | 1979 | | 48,700 | | | 172,200 | 1980 | | | 186,400 | 99,600 | 86,800 | 1981 | | | 139,200 | 90,600 | 48,600 | 1982 | | 63,800 | | | 35,100 | 1983 | | | | | 17,900 | 1984 | | | 86,900 | 79,200 | 7,700 | 1985 | | 76,500 | | | 5,600 | 1986 | | · | | | 10,600 | 1987 | | | 57,500* | 42,700* | 14,800 | 1988 | | | | | 8,900 | 1989 | | | | | 14,300 | 1990 | | 11,925** | 53,900* | 40,500 | 13,000 | 1991 | | | · | | 24,000 | 1992 | | | | | 30,400 | 1993 | | 28,227** | | | 48,800 | 1994 | | · | | | 34,800 | 1995 | | | | | 30,300 | 1996 | | 28,334** | | | 29,218 | 1997 | | · | | | 28,126 | 1998 | | | | | 19,797 | 1999 | | 9,359** | | | 22,957 | 2000 | | ,,55 <i>)</i> | | | 25,311 | 2001 | | 9,891** | 49,205 | 27,589 | 21,616 | 2002 | ^{*} The 1988 and 1991 estimate are from 200-800 m whereas earlier (and 2000) slope estimates are from 200-1,000 m. A time series of estimated size composition of the population was available for the shelf and slope trawl surveys and for the longline survey. The slope surveys typically sample more turbot than the shelf trawl surveys; consequently, the number of fish measured in the slope surveys is greater. The time series of length frequencies from the longline survey was presented in Ianelli et al. (1994). The Greenland turbot size composition from the 2002 shelf trawl survey is given in Fig. 4.5 while for the new slope survey the length frequencies are given in Fig. 4.6. Scientific research catches are reported to fulfill requirements of the Magnuson-Stevens Fisheries Conservation and Management Act. The following table documents annual research catches (1977 - 1998) from NMFS longline and trawl surveys (in tons): | Year | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | |------------------|-------
-------|--------|-------|-------|------|--------|-------|------|-------| | NMFS Bottom | | | | | | | | | | | | trawl surveys | 62.48 | 48.36 | 103.01 | 123.6 | 15.14 | 0.73 | 175.22 | 72.84 | 0.56 | 18.48 | | Domestic | | | | | | | | | | | | Longline surveys | NA | | | | | | | | | | | Cooperative | | | | | | | | | | | | Longline surveys | 3 | 3 | 6 | 11 | 9 | 7 | 8 | 7 | 11 | 6 | | Year | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | | NMFS Bottom | | | | | | | | | | | | trawl surveys | 0.64 | 0.85 | 11.37 | 0.88 | 1.43 | 8.51 | 1.44 | 1.47 | 4.64 | 1.38 | | Domestic | | | | | | | | | | | | Longline surveys | | | | | | | | | | | | Cooperative | | | | | | | | | | | | Longline surveys | 16 | 10 | 10 | 22 | 23 | 23 | | | | | ^{**} The 1980, 1983, and 1986 surveys sampled 1-900 m whereas the 1991 - 2002 surveys sampled only 1-500 m. ^{***} Based on a preparatory survey using mudsweep footrope. These data were not used in the assessment model. See text for further details. ### 4.3. Model Structure The use of the stock synthesis program (Methot 1990) to model the eastern Bering Sea component of Greenland turbot stock was presented in previous assessments (Ianelli et al. 1994, 1995). Before 1994, stock assessments of Greenland turbot in the eastern Bering Sea and Aleutian Islands have relied in part on stock reduction analysis (SRA) to provide historical trends in the fishery (Wilderbuer and Sample 1992). This year efforts were begun to simplify the model used for Greenland turbot. A functional, two-fishery combined-sexes model is complete and appears to have the same general patterns of recruitment and abundances when fit to the same length and survey indices. However, further model specification issues need to be addressed before it can be used extensively. For example, inconsistencies with the data seem to become more obvious. Thus, we feel that more consideration of how the data are used is needed before an appropriate model can be developed. As with past years, the length-version of the stock synthesis program (Methot 1990) was used for this assessment. Catch data used in the stock synthesis model were from 1960 to 2002. The last eight years were adjusted to include discards. It was assumed that the stock was at or close to its virgin biomass level at the beginning of the catch data time series. Model parameters are estimated by maximizing the log likelihood (L) of the predicted observations given the data. Data are classified into different components. For example, age composition from a survey and catch per unit effort (CPUE) from a fishery are different components. The total L is a sum of the likelihoods for each component. The total L may also include a component for a stock-recruitment relationship and penalty functions to help stabilize parameter estimates. The likelihood components may be weighted by an emphasis factor. For Greenland Turbot in the EBS the model included two fisheries, those using longline and trawl gear, and three surveys. Table 4.4 summarizes the extent of the data used in the different likelihood components. Since a new slope-survey data point was available in the current year, and given that this has been considered an important habitat area for Greenland turbot, extra "emphasis" was placed on this survey (a factor of 10) so that the model would be tuned to this abundance index. Table 4.4. Data sets used in the stock synthesis model for Greenland Turbot in the EBS. All size and age data are specified by sex. | Data Component | Years of data | |---|--------------------------------| | Survey Size at age data | 1975, 1979-82 | | Shelf Survey: size composition and biomass estimates | 1979-2002 | | Slope Survey: size composition and biomass estimates | 1979, 81, 82, 85, 88, 91, 2002 | | Longline Survey: size composition and abundance index | 1996-2002 | | Total Fishery Catch Data | 1960-2002 | | Trawl CPUE Index | 1978-1984 | | Trawl Catch Size Composition | 1977-87, 1989-91, 1993-2001 | | Longline Catch Size Composition | 1977, 1979-85, 1992-2001 | Annual recruitments are estimated as parameters in the model, they can be thought of as "anomalies" from an underlying stock-recruitment curve. These recruitment anomalies can be due to process and observation errors. Process errors refer to the real differences from the mean stock-recruitment curve caused by natural variation in recruitment success. Observation errors refer to our ability to estimate the true recruitment levels due to sampling problems. In this application, observation error is considered negligible compared to the magnitude of recruitment variability (process error). Consequently, the underlying parameters of the stock-recruit curve play an insignificant role in fitting the model to the data. For further details on the model specifications of the length-version of the stock synthesis program, see Thompson *et al.* (Pacific cod chapter, this volume). ### Selectivity Patterns A dome-shaped size-based selectivity function (Methot 1990) was estimated for each survey and fishery described below. For the trawl fishery, the periods of length frequency data collections from the domestic and foreign fleet did not overlap. Consequently, we treated the foreign and domestic trawl data as from a single fishery and simply let the selectivity pattern be different between the respective periods. Because larger fish have been observed in the recent EBS shelf region trawl surveys, selectivity was also was estimated separately for two periods: 1994-present and 1982-1993. ### 4.3.1. Parameters estimated independently #### Natural mortality, length at age, length-weight relationship The natural mortality of Greenland turbot was assumed to be 0.18. This estimate was used because it is slightly less than that of other flatfish species with a slightly lower maximum age. Greenland turbot taken by the commercial fishery have been aged as old as 21 years. Parameters describing length-at-age are estimated within the model. We do assume that the length at age 1 is the same for both sexes and that the variability in length at age 1 has an 8% CV and that the variability in length at age 21 has a CV of 7%. This appears to encompass the observed variability in length-at-age. As in the previous assessments, size-at-age information from surveys conducted between 1976-82 were used in the model to help estimate the relationship between age and length. The length-weight relationship for Greenland turbot estimated by Ianelli et al. (1993) was: ``` w = 2.69 \times 10^{-6} L^{3.3092} for females and w = 6.52 \times 10^{-6} L^{3.068} for males ``` where L = length in mm, and w = weight in grams. ### Maturation and fecundity Maturation and fecundity by size or age is poorly understood for Greenland turbot. Alton *et al.* (1988) present the results from studies of Greenland turbot in different areas in addition to the EBS region. For this analysis, we chose a logistic size-maturity relationship which has 50% of the female population mature at 60 cm; 2% and 98% of the females are assumed to be mature at about 50 and 70 cm respectively. This is based on an approximation from D'yakov's (1982) study. #### 4.3.2. Parameters estimated conditionally The key parameters estimated within the model include: - Annual recruitment estimates from 1960-1998 (1965-1969 aggregated to have a single mean value), - Selectivity parameters for the 2 fisheries, and 3 surveys, - Growth parameters: 5 parameters (2 for each sex, one in common), - Parameter that scales the expected value of recruitment, and - Effective effort-fishing mortality rates for trawl and longline fisheries (solved by matching predicted catch biomass to the observed catch biomass exactly), 1960-2002. ### 4.4. Model evaluation Size composition data are not available until 1977 hence we are unable to resolve recruitment strength information during the early period (1960s) with the model. Initially, we set the individual recruitment estimates from 1960-69 equal to that predicted by an equilibrium stock-recruitment relationship. This yielded a poor fit to the size composition data (based on past assessments) and estimated a virgin recruitment level that gave the mean unfished biomass more than 1.8 million metric tons. When all recruitment deviations were estimated (the full model), a single large deviation resulted in the early part of the time series. This indicated a year class more than an order of magnitude greater than the mean estimated recruitment since 1970. Both the full model and the equilibrium recruitment models were therefore unsatisfactory. To compensate, we pooled recruitment deviation estimates from 1965-69 as in Ianelli et al. (1993). As in past years, model configurations with the shelf survey biomass estimates treated as an absolute abundance index and the slope survey as a relative index gave unreasonable biomass levels. The best fit occurred when the slope abundance index represented only about 23% of the biomass available to the slope survey (although in previous assessments this value was about 5%). That means that a slope survey biomass estimate of 50,000 tons would expand to about 217,000 tons of actual biomass available. This value of "Q" or catchability for the slope survey is unreasonably low compared to values of Q common for other flatfish species. For this year's assessment, we selected the conservative model (where slope-survey catchability is fixed at 0.75). This fit the available data less well, but is intended to add extra conservation measures since there are a number of data inconsistencies. Since we have a new survey estimate for Greenland turbot on the Bering Sea slope area, we focus the model on fitting this index. Previously, the index was inconsistent with the high abundance of younger Greenland turbot found in the shelf survey (in the late 1970s). However, since this survey was discontinued for a number of
years, this inconsistency became less relevant to the current biomass estimated from the stock assessment model. The slope survey covers the main area of habitat for Greenland turbot; consequently, we rely on this as the primary source of abundance information. This index was given an added "emphasis" factor of 10 while for all other data sources and indices the emphasis factor was set to 1.0. #### Trends in Abundance The fits to the abundance indices are given in Fig. 4.7. The assessment model predictions for shelf survey biomass are far below the observed estimates during the early years and subsequently track the survey estimates well. These data are consistent with the conclusion of Alton et al. (1988) that recruitment of juveniles in the EBS has been low since the early 1980s. The reason that the model fits the early period of the shelf trawl survey index poorly is because such high levels of recruitment are inconsistent with observations of numbers of older fish later in the time series. The overall trend for the slope survey estimates is mimicked by the assessment model, but indicates biases based on the fixed Q values used in each model for the slope survey. The general trend of the longline survey index shows increasing numbers while the model predicts declines. The failure to fit the apparent increasing trend from the longline survey data with the model reflects the relatively large standard errors associated with this index. If we increase the model emphasis on the survey longline trend, the fits to the other surveys degrades considerably (Ianelli et al. 1995). The effect of high emphasis on the longline survey (increasing biomass trend) would indicate a much higher level of current spawning biomass. The biomass of Greenland turbot has roughly doubled during the 1970s from the early 1960s level and is currently about half of the unfished level. The 2002 total beginning of the year biomass (age 1 and older) estimate is about 115,700 (with slope survey Q set to 0.75; Fig. 4.8). In past years, extra caution has been exercised in setting harvest levels of Greenland turbot because of the lack of recruitment success in recent years. For this reason, we selected the conservative assumption to have Q for the slope survey set equal to 0.75 for our ABC recommendations. It should be noted that the slope survey biomass estimates do not include the biomass estimates from the Aleutian Islands, which averages about one fourth to one third of the total population biomass. It is therefore still likely that the biomass estimates from this model configuration are biased towards low values. The historical fishing mortality rates (combined gears) increased over time and was highest in 1981 through 1983 (Table 4.5). A comparison of this year's model result with a similar model from the 2001 assessment (except for the added emphasis on fitting the slope survey data) is also presented in Table 4.5. The estimated historical numbers at age is given in Table 4.6. Table 4.5. Historical fishing mortality rates (combined gear types), female spawning biomass, and beginning of year age 1+ biomass values by year and relative to the 2001 assessment. | | | Female Sp | awner Biomass | Total Ag | e 1+ Biomass | |------|------|------------------|---------------|-----------------|--------------------| | Year | F | 2001 Asssessment | | 2001 Assessment | Current Assessment | | 1960 | 0.06 | 376,576 | 294,820 | 636,220 | 494,540 | | 1961 | 0.10 | 360,014 | 278,054 | 609,750 | 468,494 | | 1962 | 0.10 | 333,852 | 251,564 | 568,388 | 428,177 | | 1963 | 0.07 | 307,656 | 225,101 | 527,496 | 389,004 | | 1964 | 0.08 | 294,639 | 212,058 | 508,106 | 371,808 | | 1965 | 0.02 | 281,087 | 198,890 | 494,427 | 359,664 | | 1966 | 0.03 | 279,171 | 198,051 | 506,738 | 372,608 | | 1967 | 0.06 | 276,226 | 196,918 | 538,387 | 401,401 | | 1968 | 0.07 | 269,239 | 192,004 | 587,300 | 443,197 | | 1969 | 0.07 | 261,222 | 185,586 | 651,819 | 496,649 | | 1970 | 0.04 | 265,126 | 188,753 | 728,270 | 560,140 | | 1971 | 0.07 | 296,360 | 214,766 | 818,110 | 636,175 | | 1972 | 0.13 | 341,276 | 251,026 | 871,805 | 679,346 | | 1973 | 0.10 | 380,662 | 279,974 | 866,018 | 667,408 | | 1974 | 0.13 | 423,668 | 311,828 | 850,275 | 649,628 | | 1975 | 0.13 | 443,667 | 323,166 | 802,467 | 602,233 | | 1976 | 0.13 | 441,703 | 317,603 | 759,819 | 560,467 | | 1977 | 0.07 | 417,932 | 295,085 | 717,987 | 519,583 | | 1978 | 0.10 | 402,968 | 283,517 | 710,554 | 511,518 | | 1979 | 0.11 | 380,534 | 264,370 | 693,598 | 491,966 | | 1980 | 0.15 | 363,365 | 249,162 | 680,332 | 474,171 | | 1981 | 0.17 | 342,704 | 228,826 | 656,746 | 444,774 | | 1982 | 0.15 | 323,492 | 207,582 | 624,016 | 406,880 | | 1983 | 0.14 | 312,400 | 192,250 | 587,991 | 367,897 | | 1984 | 0.08 | 305,446 | 179,610 | 546,597 | 326,858 | | 1985 | 0.05 | 310,280 | 178,994 | 520,995 | 305,180 | | 1986 | 0.04 | 313,386 | 178,901 | 497,772 | 288,286 | | 1987 | 0.04 | 310,352 | 176,229 | 476,375 | 274,537 | | 1988 | 0.03 | 298,471 | 168,397 | 456,093 | 261,251 | | 1989 | 0.05 | 282,007 | 158,686 | 439,271 | 250,816 | | 1990 | 0.08 | 262,167 | 146,137 | 421,238 | 238,774 | | 1991 | 0.08 | 243,318 | 133,056 | 400,042 | 223,514 | | 1992 | 0.03 | 230,692 | 123,694 | 379,389 | 209,081 | | 1993 | 0.10 | 227,038 | 122,378 | 368,772 | 204,093 | | 1994 | 0.10 | 217,945 | 116,400 | 353,228 | 194,472 | | 1995 | 0.09 | 206,376 | 108,638 | 334,453 | 182,215 | | 1996 | 0.09 | 196,967 | 102,819 | 316,248 | 171,534 | | 1997 | 0.11 | 190,269 | 98,908 | 298,201 | 161,805 | | 1998 | 0.15 | 181,876 | 93,805 | 278,744 | 151,092 | | 1999 | 0.09 | 169,750 | 86,238 | 258,040 | 139,131 | | 2000 | 0.12 | 158,493 | 80,313 | 241,255 | 130,747 | | 2001 | 0.09 | 145,649 | 73,144 | 224,324 | 121,948 | | 2002 | 0.05 | | 67,759 | | 115,685 | Table 4.6. Estimated beginning of year numbers of Greenland turbot by age and sex (millions). | | | | stiiia | | 8 | U | , | | Femal | | | | | , | | | | | | | | |--|---|--|--|---|---|--|---|--
--|---|--|--|--|--|--|--
--|--|--|--|--| | Yr | 1 | 2 | 3 | 4 | 5 | 6 | | 8 | 9 | 10 | | | | | | | | 18 | 19 | 20 | 21+ | | | 25.54 | | | 11.97 | | 23.60 | | | 11.46 | | | | | | | | | | | | | | | | 21.26
29.55 | | 7.40
9.07 | 9.33 | 23.17 | | | 11.02 | | | 1.34 | | | | | | | | | | | | 16.75
30.53 | 13.92 | | 14.42 | 5.65
6.97 | 6.88
4.20 | | 12.49 | 10.24
9.58 | 7.54 | 6.31
5.93 | 4.64 | | | | | | | | | | | 1977 | 27.41 | 25.38 | 11.57 | 20.05 | 11.07 | 5.17 | 3.09 | 3.73 | 9.19 | 7.04 | | 4.36 | | | | | | | | | | | 1978 | | 22.84 | 21.15 | 9.55 | 16.06 | 8.71 | 4.05 | 2.42 | | | | 4.34 | | | | | | | | | | | 1979 | 24.34 | 25.62 | 19.01 | | 7.53 | 12.36 | 6.68 | 3.10 | 1.85 | 2.23 | 5.48 | 4.19 | | | | | | | | | | | | 13.60 | | 21.32 | | 13.70 | 5.79 | 9.46 | 5.10 | | 1.41 | 1.70 | 4.16 | | | | | | | | | | | 1981
1982 | 8.76
4.64 | 11.32
7.28 | 16.85
9.40 | 17.44
13.73 | 12.07
13.29 | 10.25
8.86 | 4.30
7.47 | 7.02
3.13 | 3.78 | 1.75
2.73 | 1.04
1.26 | 1.25
0.75 | | | | | | | | | | | 1983 | 3.35 | 3.86 | 6.05 | 7.65 | 10.41 | 9.69 | 6.42 | 5.40 | | 3.68 | 1.20 | 0.73 | | | | | | | | | | | 1984 | 5.04 | 2.78 | 3.20 | 4.92 | 5.80 | 7.60 | 7.02 | 4.64 | | 1.63 | | 1.43 | | | | | | | | | | | 1985 | 9.21 | 4.20 | 2.32 | 2.64 | 3.91 | 4.51 | 5.88 | 5.43 | 3.59 | 3.02 | 1.27 | 2.06 | | | | | | | | | | | 1986 | 12.15 | 7.68 | 3.50 | 1.92 | 2.13 | 3.11 | 3.58 | 4.67 | | 2.85 | | 1.00 | | | | | | | | | | | 1987 | 8.07 | 10.14 | 6.40 | 2.90 | 1.56 | 1.72 | 2.50 | 2.88 | | | 2.29 | 1.93 | | | | | | | | | | | 1988
1989 | 5.60
5.11 | 6.73
4.67 | 8.46
5.61 | 5.31
7.03 | 2.36
4.35 | 1.26
1.92 | 1.38
1.02 | 2.01
1.12 | 2.32
1.63 | 3.02 | | 1.84
2.26 | | | | | | | | | | | 1990 | 6.62 | 4.27 | 3.90 | 4.69 | 5.87 | 3.63 | 1.59 | 0.83 | 0.90 | 1.31 | 1.50 | 1.96 | | | | | | | | | | | 1991 | 8.82 | 5.53 | 3.56 | 3.26 | 3.91 | 4.89 | 2.99 | 1.28 | | 0.71 | 1.02 | 1.17 | | | | | | | | | | | 1992 | 3.91 | 7.36 | 4.62 | 2.98 | 2.72 | 3.26 | 4.03 | 2.40 | 1.01 | 0.51 | 0.55 | 0.79 | 0.90 | 1.17 | 1.08 | 0.71 | 0.60 | 0.25 | 0.41 | 0.22 | 0.84 | | 1993 | 3.12 | 3.27 | 6.15 | 3.86 | 2.49 | 2.27 | 2.72 | 3.33 | 1.98 | 0.83 | 0.42 | 0.45 | | | | | | | | | | | 1994 | 2.84 | 2.61 | 2.73 | 5.14 | 3.22 | 2.07 | 1.89 | 2.25 | 2.74 | 1.61 | | 0.34 | | | | | | | | | | | 1995
1996 | 2.83
3.94 | 2.37
2.36 | 2.18
1.98 | 2.28
1.82 | 4.29
1.90 | 2.69
3.58 | 1.72
2.23 | 1.54
1.41 | | 2.18
1.45 | 1.27
1.74 | 0.52
1.00 | | | | | | | | | | | 1990 | 3.63 | 3.29 | 1.98 | 1.66 | 1.52 | 1.59 | 2.23 | 1.84 | | | 1.17 | 1.39 | | | | | | | | | | | 1998 | 3.68 | 3.03 | 2.75 | 1.65 | 1.38 | 1.27 | 1.32 | 2.47 | 1.51 | 0.94 | 0.82 | 0.93 | | | | | | | | | | | 1999 | 3.51 | 3.08 | 2.53 | 2.30 | 1.38 | 1.15 | 1.05 | 1.09 | 2.01 | 1.22 | 0.74 | 0.64 | | | | | | | | | | | 2000 | 4.81 | 2.93 | 2.57 | 2.11 | 1.92 | 1.15 | 0.96 | 0.87 | 0.89 | 1.63 | 0.98 | 0.59 | 0.50 | 0.56 | 0.65 | 0.36 | 0.14 | 0.07 | 0.07 | 0.10 | 0.74 | | 2001 | 4.81 | 4.02 | 2.45 | 2.15 | 1.77 | 1.60 | 0.95 | 0.79 | 0.71 | 0.72 | 1.30 | | | | | | 0.27 | | | | | | 2002 | 4.81 | 4.02 | 3.36 | 2.04 | 1.79 | 1.47 | 1.33 | 0.79 | 0.64 | 0.57 | 0.58 | 1.03 | 0.61 | 0.36 | 0.30 | 0.33 | 0.38 | 0.21 | 0.08 | 0.04 | 0.52 | V. | 1 | 2 | 2 | 1 | 5 | 6 | 7 | 0 | Male | | 1.1 | 12 | 12 | 1.4 | 15 | 16 | 17 | 10 | 10 | 20 | 21_ | | Yr
1973 | | | | | | | | | 9 | 10 | | | | 14 | | _ | | 18 | 19
0.28 | 20 | 21+ | | 1973 | 25.54 | 13.37 | 9.02 | 11.99 | 30.91 | 23.91 | 18.80 | 14.80 | 9 11.59 | 10
2.34 | 1.80 | 1.40 | 1.11 | 0.88 | 0.70 | 0.54 | 0.42 | 0.34 | 0.28 | 0.24 | 1.20 | | 1973
1974 | 25.54
35.55 | 13.37
21.26 | 9.02 | | | | 18.80
18.07 | 14.80
14.17 | 9 | 2.34
8.73 | 1.80 | | 1.11
1.06 | 0.88
0.83 | 0.70
0.66 | 0.54
0.53 | 0.42
0.41 | 0.34
0.32 | 0.28
0.26 | 0.24
0.21 | 1.20
1.09 | | 1973
1974
1975
1976 | 25.54
35.55
16.75
30.53 |
13.37
21.26
29.55
13.92 | 9.02
11.12
17.66
24.55 | 11.99
7.41
9.09
14.45 | 30.91
9.43
5.72
7.05 | 23.91
23.57
7.00
4.28 | 18.80
18.07
17.30
5.18 | 14.80
14.17
13.22
12.75 | 9
11.59
11.15
10.36
9.74 | 2.34
8.73
8.15
7.63 | 1.80
1.77
6.38
6.00 | 1.40
1.36
1.29
4.70 | 1.11
1.06
0.99
0.95 | 0.88
0.83
0.77
0.73 | 0.70
0.66
0.61
0.57 | 0.54
0.53
0.49
0.45 | 0.42
0.41
0.39
0.36 | 0.34
0.32
0.30
0.29 | 0.28
0.26
0.23
0.22 | 0.24
0.21
0.19
0.17 | 1.20
1.09
0.96
0.85 | | 1973
1974
1975
1976
1977 | 25.54
35.55
16.75
30.53
27.41 | 13.37
21.26
29.55
13.92
25.38 | 9.02
11.12
17.66
24.55
11.57 | 11.99
7.41
9.09
14.45
20.09 | 30.91
9.43
5.72
7.05
11.20 | 23.91
23.57
7.00
4.28
5.27 | 18.80
18.07
17.30
5.18
3.16 | 14.80
14.17
13.22
12.75
3.81 | 9
11.59
11.15
10.36
9.74
9.38 | 2.34
8.73
8.15
7.63
7.16 | 1.80
1.77
6.38
6.00
5.61 | 1.40
1.36
1.29
4.70
4.42 | 1.11
1.06
0.99
0.95
3.46 | 0.88
0.83
0.77
0.73
0.70 | 0.70
0.66
0.61
0.57
0.54 | 0.54
0.53
0.49
0.45
0.42 | 0.42
0.41
0.39
0.36
0.33 | 0.34
0.32
0.30
0.29
0.27 | 0.28
0.26
0.23
0.22
0.21 | 0.24
0.21
0.19
0.17
0.16 | 1.20
1.09
0.96
0.85
0.76 | | 1973
1974
1975
1976
1977
1978 | 25.54
35.55
16.75
30.53
27.41
30.77 | 13.37
21.26
29.55
13.92
25.38
22.84 | 9.02
11.12
17.66
24.55
11.57
21.15 | 11.99
7.41
9.09
14.45
20.09
9.57 | 30.91
9.43
5.72
7.05
11.20
16.17 | 23.91
23.57
7.00
4.28
5.27
8.85 | 18.80
18.07
17.30
5.18
3.16
4.14 | 14.80
14.17
13.22
12.75
3.81
2.48 | 9
11.59
11.15
10.36
9.74
9.38
2.99 | 2.34
8.73
8.15
7.63
7.16
7.35 | 1.80
1.77
6.38
6.00
5.61
5.62 | 1.40
1.36
1.29
4.70
4.42
4.40 | 1.11
1.06
0.99
0.95
3.46
3.46 | 0.88
0.83
0.77
0.73
0.70
2.72 | 0.70
0.66
0.61
0.57
0.54
0.55 | 0.54
0.53
0.49
0.45
0.42
0.42 | 0.42
0.41
0.39
0.36
0.33
0.33 | 0.34
0.32
0.30
0.29
0.27
0.26 | 0.28
0.26
0.23
0.22
0.21
0.21 | 0.24
0.21
0.19
0.17
0.16
0.17 | 1.20
1.09
0.96
0.85
0.76
0.73 | | 1973
1974
1975
1976
1977
1978
1979 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29 | 1.11
1.06
0.99
0.95
3.46
3.46
3.36 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08 | 0.54
0.53
0.49
0.45
0.42
0.42 | 0.42
0.41
0.39
0.36
0.33
0.33 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25 | 0.28
0.26
0.23
0.22
0.21
0.21
0.20 | 0.24
0.21
0.19
0.17
0.16
0.17 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69 | | 1973
1974
1975
1976
1977
1978 | 25.54
35.55
16.75
30.53
27.41
30.77 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81 | 23.91
23.57
7.00
4.28
5.27
8.85 | 18.80
18.07
17.30
5.18
3.16
4.14 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42 | 2.34
8.73
8.15
7.63
7.16
7.35 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
4.29 | 1.11
1.06
0.99
0.95
3.46
3.46
3.36
3.28 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59 | 0.42
0.41
0.39
0.36
0.33
0.33
0.32 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25 | 0.28
0.26
0.23
0.22
0.21
0.21
0.20
0.19 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65 | | 1973
1974
1975
1976
1977
1978
1979
1980 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29 | 1.11
1.06
0.99
0.95
3.46
3.46
3.36
3.28
3.18 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50 | 0.42
0.41
0.39
0.36
0.33
0.33
0.32
0.32 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25 | 0.28
0.26
0.23
0.22
0.21
0.21
0.20
0.19
0.18 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
4.29
1.29
0.78
0.94 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
1.67 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
1.28 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.24
0.85
0.79 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60
0.54
0.49 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68 |
0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
2.31
0.68
0.41 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.76
1.67
0.49 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
1.28 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.24
0.85
0.79
0.73 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.13 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
2.31
0.68
0.41
0.53 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
0.49
0.32 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
1.38
1.28
1.21
0.38 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.24
0.85
0.79
0.73 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58
0.57 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49
0.45
0.70 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
1.67
0.49
0.32
0.42 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
1.28
1.21
0.38
0.25 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.30 | 0.34
0.32
0.30
0.29
0.26
0.25
0.25
0.24
0.85
0.79
0.73
0.72 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58
0.57 | 0.24
0.21
0.19
0.17
0.16
0.15
0.14
0.13
0.45
0.45 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60
0.54
0.49
0.45
0.70 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68
10.14 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.76
1.67
0.49
0.32
0.42
0.73 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
1.38
1.21
0.38
0.25
0.34 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.30
0.20 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.75
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58
0.57
0.57 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91
3.55
3.09 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.86 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82
1.58 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.76
1.67
0.49
0.32
0.42
0.73
1.08 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
1.38
1.21
0.38
0.25
0.34
0.58 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.30
0.20
0.27 |
0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.79
0.73
0.72
0.75
0.25
0.16 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58
0.57
0.61
0.20 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.46
0.49 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73
1.27 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91
3.55
3.09
1.92 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.86
2.51 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
1.14
1.66
0.82
1.58
1.53 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66
1.28 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.76
1.67
0.49
0.32
0.42
0.73
1.08
0.54 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
1.38
1.21
0.38
0.25
0.34
0.58 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.30
0.20
0.27
0.47 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.75
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.17
0.62
0.58
0.57
0.61
0.20
0.13 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.46
0.49
0.16 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.82 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.90
3.56 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
5.87
3.91 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73
1.27
1.93
3.64
4.90 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.03
1.61
3.03 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66
0.93
0.69 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91
1.65
3.09
2.91
1.65
3.09
2.91
3.75
3.75 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.86
2.51
1.55
1.07 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
1.22 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82
1.58
1.53 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66
1.28
1.23
1.46 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
0.49
0.32
0.42
0.73
1.08
0.54
1.03
0.96 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
0.38
0.25
0.34
0.58
0.43
0.81 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.30
0.20
0.27
0.47
0.70
0.34 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.27
0.79
0.73
0.72
0.75
0.25
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.57
0.57
0.61
0.20
0.13
0.20 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.46
0.49
0.11
0.14 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.45
0.70
0.92
1.10
1.26
1.42
1.27 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.62
8.82
3.91 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53
7.36 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.90
3.56
4.62 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
5.87
3.91
2.72 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.27
1.93
3.64
4.90
3.27 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.33
1.61
3.03
4.08 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
0.69
1.07 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91
3.55
3.09
1.92
1.35
0.74 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.34
2.51
1.55
1.07
0.59 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.87
1.89
2.32
2.02
1.22
0.84 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82
1.58
1.53
1.86
1.59
0.96 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66
1.28
1.23
1.46
1.24 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
0.49
0.32
0.73
1.08
0.54
1.03
0.42
0.73
1.08
0.54 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.50
1.38
1.21
0.38
0.25
0.34
0.58
0.88
0.43
0.81
0.75 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.94
0.20
0.27
0.47
0.70
0.34
0.63 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.75
0.25
0.26
0.22
0.38 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.57
0.57
0.61
0.20
0.13
0.20
0.30
0.43 | 0.24
0.21
0.19
0.17
0.16
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.46
0.19
0.11
0.14
0.11 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991 |
25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.82
3.91
3.12 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53
7.36
3.27 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.90
3.56
4.62
6.15 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98
3.86 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
4.37
5.87
3.91
2.72
2.49 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.27
1.93
3.64
4.90
3.27
2.27 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39
1.61
3.03
4.08
2.73 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49
3.39 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.69
0.69
1.07
2.07 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
2.80
3.75
1.66
3.08
2.91
3.55
3.09
1.92
1.92
0.74
0.55
0.89 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.34
2.51
1.55
1.07
0.59
0.45 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
1.22
0.84
0.48 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82
1.58
1.53
1.86
0.96
0.69 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
2.31
0.68
0.41
1.25
1.26
1.28
1.23
1.46
1.24
0.78 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
1.76
0.49
0.32
0.42
0.73
1.08
0.54
1.03
1.04
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05
1.05 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
1.28
1.21
0.38
0.25
0.34
0.58
0.88
0.88
0.81
0.75 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
1.00
0.93
0.30
0.20
0.27
0.47
0.70
0.34
0.63
0.61 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.75
0.16
0.22
0.38
0.55
0.26 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.57
0.57
0.57
0.61
0.20
0.13
0.20 | 0.24
0.21
0.19
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.46
0.49
0.16
0.11
0.14
0.33 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27
1.08
0.95 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1999
1990
1991
1992 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.82
3.91
3.12
2.84 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.33
7.36
3.27
2.61 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.96
4.62
6.15
2.73 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98
3.86
5.14 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
5.87
3.91
2.72
2.49
3.22 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73
1.27
1.93
3.64
4.90
3.27
2.27
2.08 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39
1.03
1.61
3.03
4.08
2.73 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49
3.39
2.27 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66
0.93
0.69
1.07
2.07
2.82 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.75
1.66
3.08
2.91
3.55
3.09
1.92
0.74
0.55
0.74 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.86
2.51
1.55
1.07
0.59
0.45
0.73 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
2.02
0.84
0.48
0.37 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.94
0.56
0.68
1.14
1.66
0.82
1.58
1.59
0.96
0.69
0.40 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
2.31
0.68
0.41
0.53
0.90
1.28
1.24
0.66
1.28
1.24
0.78 |
0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.76
0.49
0.32
0.42
0.73
1.08
0.54
1.03
0.42
0.73
1.03
0.54
0.55
0.44
0.55
0.44
0.55
0.44
0.55
0.49
0.42
0.42
0.42
0.54
0.55
0.64
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
0.25
0.34
0.58
0.88
0.88
0.43
0.43
0.75
0.93 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
0.20
0.27
0.47
0.70
0.63
0.61
0.76 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.16
0.22
0.38
0.55
0.26
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.57
0.57
0.61
0.20
0.13
0.58
0.57
0.61
0.20
0.13
0.20
0.43 | 0.24
0.21
0.19
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.45
0.49
0.16
0.11
0.14
0.23
0.35 | 1.20
1.09
0.96
0.85
0.76
0.73
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27
1.08
0.95
0.97 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.82
3.91
3.12 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53
7.36
3.27 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.90
3.56
4.62
6.15 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98
3.86 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
4.37
5.87
3.91
2.72
2.49 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.27
1.93
3.64
4.90
3.27
2.27 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39
1.61
3.03
4.08
2.73 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49
3.39 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66
0.93
0.69
1.07
2.07
2.82
1.86 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
2.80
3.75
1.66
3.08
2.91
3.55
3.09
1.92
1.92
0.74
0.55
0.89 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.07
1.31
2.03
2.71
1.29
2.44
2.34
2.86
2.51
1.55
1.07
0.59
0.45
0.73
1.38 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
1.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
1.22
0.84
0.48 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.28
0.94
0.56
0.68
1.14
1.66
0.82
1.53
1.83
1.85
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.31
0.68
0.41
0.53
0.90
1.34
0.66
1.28
1.23
1.24
0.78
0.78 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
0.42
0.73
1.08
0.54
1.03
0.96
1.14
1.02
0.64
0.45 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
0.25
0.34
0.58
0.88
0.43
0.75
0.75
0.93 |
0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.10
0.93
0.94
0.30
0.20
0.27
0.47
0.70
0.34
0.30
0.30
0.30
0.31
0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.32
0.33
0.34
0.35
0.36
0.37
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39
0.39 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.73
0.72
0.75
0.25
0.16
0.25
0.29
0.24
0.25
0.24
0.25
0.29
0.27
0.24
0.25
0.25
0.24
0.25
0.25
0.24
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.62
0.58
0.57
0.61
0.20
0.13
0.30
0.43
0.43 | 0.24
0.21
0.19
0.17
0.16
0.15
0.13
0.13
0.45
0.45
0.46
0.49
0.16
0.11
0.14
0.23
0.23
0.23
0.23 | 1.20
1.09
0.96
0.85
0.76
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27
1.08
0.95
0.97 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.23
3.91
3.12
2.84
2.83 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53
7.36
3.27
2.61
2.37 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.96
4.62
6.15
2.73
2.18 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98
3.86
5.14
2.28 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
5.87
3.91
2.72
2.49
3.22
4.29 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73
1.27
1.93
3.64
4.90
3.27
2.27
2.08
2.69 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39
1.03
1.61
3.03
4.08
2.73
1.90 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49
3.39
2.27 | 9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66
0.93
0.69
1.07
2.07
2.82
1.86
1.29 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
2.80
3.08
2.91
3.55
3.09
1.92
1.35
0.74
0.55
0.89
1.71
2.28 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.31
2.03
2.71
1.29
2.44
2.34
2.86
2.51
1.55
1.05
0.45
0.73
1.38 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
1.22
0.84
0.48
0.37
0.58 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.28
0.94
0.56
0.68
1.14
1.66
0.82
1.53
1.85
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66
1.28
1.23
1.46
0.78
0.78 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
0.32
0.42
0.73
1.08
0.54
1.03
0.96
0.96
1.14
1.02
0.64
0.45
0.55 | 0.54
0.53
0.49
0.45
0.42
1.59
1.50
0.38
0.25
0.34
0.58
0.81
0.75
0.93
0.83
0.75 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
0.94
0.30
0.20
0.27
0.47
0.70
0.34
0.63
0.61
0.76
0.65
0.41 | 0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.25
0.24
0.85
0.79
0.73
0.75
0.25
0.16
0.22
0.38
0.55
0.16
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.62
0.58
0.57
0.61
0.20
0.13
0.18
0.30
0.43
0.30
0.43
0.43
0.43
0.43 | 0.24
0.21
0.19
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.46
0.49
0.16
0.11
0.13
0.13
0.45
0.45
0.45
0.45
0.45
0.16
0.17 | 1.20
1.09
0.96
0.85
0.76
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27
1.08
0.95
0.97
1.06 | | 1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996 | 25.54
35.55
16.75
30.53
27.41
30.77
24.34
13.60
8.76
4.64
3.35
5.04
9.21
12.15
8.07
5.60
5.11
6.62
8.82
3.91
3.12
2.84
2.83
3.94 | 13.37
21.26
29.55
13.92
25.38
22.84
25.62
20.27
11.32
7.28
3.86
2.78
4.20
7.68
10.14
6.73
4.67
4.27
5.53
7.36
3.27
2.61
2.37 | 9.02
11.12
17.66
24.55
11.57
21.15
19.01
21.32
16.85
9.40
6.05
3.20
2.32
3.50
6.40
8.46
5.61
3.90
3.56
4.62
6.15
2.73
2.18 | 11.99
7.41
9.09
14.45
20.09
9.57
17.42
15.65
17.47
13.76
7.67
4.93
2.64
1.92
2.91
5.31
7.03
4.69
3.26
2.98
3.86
5.14
2.28
1.82 | 30.91
9.43
5.72
7.05
11.20
16.17
7.59
13.81
12.20
13.46
10.56
5.88
3.94
2.14
1.57
2.37
4.37
5.87
3.91
2.72
2.49
3.22
4.29
1.90 | 23.91
23.57
7.00
4.28
5.27
8.85
12.51
5.87
10.40
9.03
9.90
7.77
4.60
3.15
1.73
1.27
1.93
3.64
4.90
3.27
2.27
2.08
2.69
3.58 | 18.80
18.07
17.30
5.18
3.16
4.14
6.79
9.59
4.37
7.60
6.55
7.19
6.02
3.65
2.54
1.39
1.03
1.61
3.03
4.08
2.73
1.90
1.73
2.24 | 14.80
14.17
13.22
12.75
3.81
2.48
3.17
5.20
7.12
3.18
5.50
4.74
5.56
4.78
2.94
2.04
1.13
0.85
1.33
2.49
3.39
2.27
1.57 |
9
11.59
11.15
10.36
9.74
9.38
2.99
1.90
2.42
3.86
5.18
2.30
3.98
3.67
4.41
3.85
2.36
1.66
0.93
0.69
1.07
2.07
2.07
2.18
1.29
1.19
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20 | 2.34
8.73
8.15
7.63
7.16
7.35
2.29
1.45
1.80
2.80
3.08
2.91
3.55
3.09
1.92
1.35
0.74
0.55
0.89
1.91
1.91
1.91
1.91
1.91
1.91
1.91
1 | 1.80
1.77
6.38
6.00
5.61
5.62
5.62
1.75
1.31
2.03
2.71
1.29
2.44
2.34
2.51
1.55
1.07
0.59
0.45
0.73
1.38
1.25
0.88 | 1.40
1.36
1.29
4.70
4.42
4.40
4.29
0.78
0.94
1.47
2.10
1.02
1.97
1.89
2.32
2.02
1.22
0.84
0.48
0.37
0.58
1.11 | 1.11
1.06
0.99
0.95
3.46
3.36
3.28
3.18
0.56
0.68
1.14
1.66
0.82
1.58
1.53
1.86
0.69
0.69
0.69
0.69
0.69
0.69
0.69
1.12
1.58
1.53
0.94
0.94
0.94
0.94
0.94
0.95
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96 | 0.88
0.83
0.77
0.73
0.70
2.72
2.65
2.57
2.43
0.68
0.41
0.53
0.90
1.34
0.66
1.28
1.23
1.46
0.53
0.50
0.50
0.50
0.50
0.50
0.50
0.50 | 0.70
0.66
0.61
0.57
0.54
0.55
2.08
2.02
1.90
0.32
0.42
0.73
1.08
0.54
1.03
0.96
1.14
1.02
0.64
0.45
0.55
0.55
0.49
0.32
0.42
0.73
1.08
0.54
0.55
0.55
0.64
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65 | 0.54
0.53
0.49
0.45
0.42
0.42
1.59
1.38
1.21
0.38
0.25
0.34
0.58
0.88
0.81
0.75
0.93
0.93
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.63 | 0.42
0.41
0.39
0.36
0.33
0.32
0.32
1.18
1.09
0.94
0.30
0.20
0.27
0.47
0.70
0.34
0.63
0.61
0.76
0.65
0.41
0.29
0.17 |
0.34
0.32
0.30
0.29
0.27
0.26
0.25
0.24
0.85
0.79
0.75
0.25
0.16
0.22
0.38
0.55
0.26
0.25
0.67
0.75
0.25
0.25
0.25
0.79
0.75
0.25
0.25
0.26
0.27
0.75
0.25
0.25
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27 | 0.28
0.26
0.23
0.22
0.21
0.20
0.19
0.18
0.57
0.61
0.20
0.18
0.30
0.43
0.22
0.42
0.39
0.48 | 0.24
0.21
0.19
0.17
0.16
0.15
0.14
0.13
0.45
0.45
0.46
0.49
0.16
0.11
0.14
0.23
0.35
0.37
0.37
0.37
0.37
0.39 | 1.20
1.09
0.96
0.85
0.76
0.69
0.65
0.60
0.54
0.49
0.45
0.70
0.92
1.10
1.26
1.42
1.27
1.08
0.95
0.97
1.06 | #### Selectivity 4.81 2000 4.81 2002 4.81 2001 2.93 4.02 2.57 2.45 2.11 2.15 1.92 1.77 1.15 1.60 0.96 0.96 0.88 0.80 Selectivity of Greenland turbot varied considerably between all of the surveys and fisheries. The shelf survey selected only small fish whereas the slope survey caught much larger fish. A similar pattern was observed between the trawl and longline fisheries with the longline fishery consistently catching larger $0.66 \quad 0.60 \quad 0.61 \quad 1.13 \quad 0.69 \quad 0.43 \quad 0.38 \quad 0.44 \quad 0.52 \quad 0.31 \quad 0.13 \quad 0.07 \quad 0.88$ Greenland turbot (Fig. 4.9). Note that the average selectivity estimates for the slope and shelf surveys indicate that our surveys do not sample intermediate size fish (35-50cm) very well. The reason for this is not clear; however, we feel that it is related to the apparent bi-modality in the size distribution observed in the trawl fishery. #### Fit to Size Composition Data Size composition observations from the fisheries and surveys are generally poorly matched by the model predictions. In some years, relatively few fish were measured so adjustments of the model to those data would depend on the trade-off in fitting other data, which may have had more extensive sampling. Second, unaccounted fish movement and hence changing availability affects fits to size composition data when an "average" gear selectivity is used. Finally, natural mortality rate is undoubtedly variable among cohorts and years, the extent of which would affect our ability to model the age structure of the population accurately. The nature of the inconsistencies among data types is presented below, particularly as they pertain to assessing the current stock status. #### Recruitment Recruitment of young juvenile Greenland turbot has been poor since the early 1980s based on EBS shelf trawl surveys. There were several strong year-classes through the 1970s, which were followed by poor recruitment of Greenland turbot since the early 1980s (Fig. 4.10). Preliminary analyses on fitting the stock-recruitment relationship indicated that the residuals were highly auto-correlated. For the present analyses, the authors feel that model assumptions are too great to pursue stock-recruitment analyses. Progress was made in the past year towards developing alternative model for Greenland turbot. This new approach may prove useful for providing reasonable estimates of F_{msy} (and associated uncertainty) that may be useful in considerations for Tier 1 of Amendment 56. # 4.5. Projections and harvest alternatives #### Maximum Sustainable Yield Maximum sustainable yield (MSY) calculations require assumptions about the stock recruitment relationship, which for Greenland turbot may be impractical as many functional forms can fit the data equally well. As presented above, the harvest strategy relative to reductions in spawning biomass per recruit (e.g., $F_{40\%}$) was selected in the absence of information on the stock-recruitment productivity relationship required for calculating MSY levels. #### ABC and Overfishing levels The recommended harvest levels vary considerably among models depending on the assumptions made about the catchability coefficients from the slope-trawl survey (Ianelli et al. 1999). Since there are several areas of uncertainty surrounding this assessment, for the basis for recommendations we selected a conservative configuration (assuming slope-survey catchability=0.75). The status of the projected spawning biomass in year 2003 relative to $B_{40\%}$ would place Greenland turbot in Tier 3a of Amendment 56 We computed $B_{40\%}$ value by using the mean recruitment estimated for the period 1978-1998. The results indicate that the long-term average female spawning biomass is around 54,400 tons. The current estimate of the year 2003 female spawning biomass is about 67,800 t. While the Council and past recommendations have intentionally been extra conservative with the idea of promoting the recovery of Greenland turbot in the EBS and Aleutian Islands region, the stock appears to be on a continuing decline. While the stock is technically not overfished and is currently above $B_{40\%}$, we feel that extra caution is warranted. The new survey information from the slope region provides insight on the abundance of Greenland turbot in their main habitat area (the most recent survey prior to that of 2002 was in 1991). However, we feel that an ABC based on the recent 5-year average fishing mortality is recommended which is **5,880 tons.** We feel that this is justified since in the projections we anticipate further declines given the current estimate of the age composition of the stock. Our recommendation for overfishing, based on the adjusted $F_{35\%}$ rate is **17,800 t** corresponding to a full-selection F of 0.32. The value of the Council's overfishing definition depends on the age-specific selectivity of the fishing gear, the somatic growth rate, natural mortality, and the size (or age) -specific maturation rate. As this rate depends on assumed selectivity, future yields are sensitive to relative gear-specific harvest levels. Because harvest of this resource is not allocated by gear type, the unpredictable nature of future harvests between gears is an added source of uncertainty. However, this uncertainty is considerably less than uncertainty related to treatment of survey biomass levels, i.e., factors which contribute to estimating absolute biomass (Ianelli et al. 1999). ### 4.5.1. Standard harvest scenarios and projections This year, a standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of Amendment 56, the National Environmental Protection Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA). For each scenario, the projections begin with the vector of 2002 numbers at age estimated in the assessment. This vector is then projected forward to the beginning of 2003 using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for 2002 (here assumed to be 2,700 t). In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch
associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches. Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for 2003, are as follow (" $max F_{ABC}$ " refers to the maximum permissible value of F_{ABC} under Amendment 56): - Scenario 1: In all future years, F is set equal to $max F_{ABC}$. (Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.) - Scenario 2: In all future years, F is set equal to a constant fraction of $max F_{ABC}$, where this fraction is equal to the ratio of the F_{ABC} value for 2002 recommended in the assessment to the $max F_{ABC}$ for 2002. (Rationale: When F_{ABC} is set at a value below $max F_{ABC}$, it is often set at the value recommended in the stock assessment.) - Scenario 3: In all future years, F is set equal to 50% of max F_{ABC} . (Rationale: This scenario provides a likely lower bound on F_{ABC} that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.) - Scenario 4: In all future years, F is set equal to the 1997-2001 average F. (Rationale: For some stocks, TAC can be well below ABC, and recent average F may provide a better indicator of F_{TAC} than F_{ABC} .) - Scenario 5: In all future years, F is set equal to zero. (Rationale: In extreme cases, TAC may be set at a level close to zero.) Scenarios 1 through 5 were projected 13 years from 2002 (Table 4.7). Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follows (for Tier 3 stocks, the MSY level is defined as $B_{35\%}$): - Scenario 6: In all future years, F is set equal to F_{OFL} . (Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above ½ of its MSY level in 2003 and above its MSY level in 2013 under this scenario, then the stock is not overfished.) - Scenario 7: In 2003 and 2004, F is set equal to $max F_{ABC}$, and in all subsequent years, F is set equal to F_{OFL} . (Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 2015 under this scenario, then the stock is not approaching an overfished condition.) Our projection model run under these conditions indicates that for Scenario 6, the Greenland turbot stock is not overfished based on the first criterion (year 2003 spawning biomass estimated at 64,900 t relative to $\frac{1}{2}B_{35\%} = 23,800$ tons). Under the guidelines, since the year 2003 biomass estimate is well above the $B_{35\%}$ level (and $B_{40\%}$) we have determined that the stock is not overfished. Projections of fishable biomass 13 years into the future under alternative fishing mortality rates were examined. The same natural mortality and growth parameters that were used in the previous stock synthesis runs were employed for the projections. The results suggest a continued decline until about 2007 (Fig. 4.11). For this scenario, annual yield drops as low as 8,700 t and biomass falls to about 67% of the $B_{40\%}$ level. Under Scenarios 6 and 7, `the projected spawning biomass for Greenland turbot is not currently overfished, nor is it approaching an overfished status. Table 4.7. Mean spawning biomass, F, and yield projections for Greenland turbot, 2002-2015. The full-selection fishing mortality rates (F's) between longline and trawl gears were assumed **equal**. The values for $B_{40\%}$ and $B_{35\%}$ are 54,400 and 47,600 tons, respectively. | Sp.Biomass | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | |--------------|------------|------------|------------|------------|------------|------------|------------| | 2002 | 67,762 | 67,762 | 67,762 | 67,762 | 67,762 | 67,762 | 67,762 | | 2003 | 64,936 | 64,936 | 64,936 | 64,936 | 64,936 | 64,936 | 64,936 | | 2004 | 53,468 | 60,084 | 58,714 | 60,084 | 64,536 | 51,148 | 53,468 | | 2005 | 45,365 | 56,239 | 53,844 | 56,239 | 64,426 | 42,260 | 45,365 | | 2006 | 41,085 | 53,572 | 50,481 | 53,572 | 64,847 | 37,904 | 39,713 | | 2007 | 39,138 | 52,019 | 48,712 | 52,019 | 65,816 | 36,079 | 37,156 | | 2008 | 38,916 | 51,697 | 48,397 | 51,697 | 67,580 | 36,006 | 36,637 | | 2009 | 40,444 | 53,053 | 49,805 | 53,053 | 70,720 | 37,642 | 37,994 | | 2010 | 43,208 | 55,943 | 52,632 | 55,943 | 75,260 | 40,420 | 40,599 | | 2011 | 46,256 | 59,660 | 56,120 | 59,660 | 80,640 | 43,347 | 43,425 | | 2012 | 48,962 | 63,536 | 59,645 | 63,536 | 86,197 | 45,808 | 45,831 | | 2013 | 51,147 | 67,273 | 62,946 | 67,273 | 91,711 | 47,658 | 47,656 | | 2014 | 52,773 | 70,656 | 65,841 | 70,656 | 96,962 | 48,921 | 48,910 | | 2015 | 53,932 | 73,624 | 68,303 | 73,624 | 101,857 | 49,728 | 49,716 | | Fishing Mort | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | | 2002 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | 2003 | 0.26 | 0.10 | 0.13 | 0.10 | 0.00 | 0.32 | 0.26 | | 2004 | 0.26 | 0.10 | 0.13 | 0.10 | 0.00 | 0.30 | 0.26 | | 2005 | 0.22 | 0.10 | 0.13 | 0.10 | 0.00 | 0.25 | 0.27 | | 2006 | 0.19 | 0.10 | 0.12 | 0.10 | 0.00 | 0.22 | 0.23 | | 2007 | 0.18 | 0.10 | 0.12 | 0.10 | 0.00 | 0.21 | 0.22 | | 2008 | 0.18 | 0.10 | 0.12 | 0.10 | 0.00 | 0.21 | 0.21 | | 2009 | 0.19 | 0.10 | 0.12 | 0.10 | 0.00 | 0.22 | 0.22 | | 2010 | 0.20 | 0.10 | 0.12 | 0.10 | 0.00 | 0.24 | 0.24 | | 2011 | 0.22 | 0.10 | 0.12 | 0.10 | 0.00 | 0.25 | 0.25 | | 2012 | 0.23 | 0.10 | 0.13 | 0.10 | 0.00 | 0.26 | 0.26 | | 2013 | 0.23 | 0.10 | 0.13 | 0.10 | 0.00 | 0.27 | 0.27 | | 2014 | 0.24 | 0.10 | 0.13 | 0.10 | 0.00 | 0.28 | 0.28 | | 2015 | 0.24 | 0.10 | 0.13 | 0.10 | 0.00 | 0.28 | 0.28 | | Yield | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7 | | 2002 | 2,700 | 2,700 | 2,700 | 2,700 | 2,700 | 2,700 | 2,700 | | 2003 | 14,718 | 5,879 | 7,700 | 5,879 | 0 | 17,848 | 14,718 | | 2004 | 11,994 | 5,435 | 6,963 | 5,435 | 0 | 13,386 | 11,994 | | 2005 | 8,697 | 5,076 | 6,318 | 5,076 | 0 | 9,243 | 10,592 | | 2006 | 7,126 | 4,820 | 5,534 | 4,820 | 0 | 7,433 | 8,144 | | 2007 | 6,421 | 4,653 | 5,120 | 4,653 | 0 | 6,683 | 7,088 | | 2008 | 6,306 | 4,598 | 5,025 | 4,598 | 0 | 6,610 | 6,850 | | 2009 | 6,794 | 4,687 | 5,272 | 4,687 | 0 | 7,211 | 7,353 | | 2010 | 7,693 | 4,894 | 5,695 | 4,894 | 0 | 8,272 | 8,351 | | 2011 | 8,664 | 5,170 | 6,148 | 5,170 | 0 | 9,406 | 9,444 | | 2012 | 9,504 | 5,472 | 6,580 | 5,472 | 0 | 10,366 | 10,380 | | 2013 | 10,173 | 5,778 | 6,984 | 5,778 | 0 | 11,090 | 11,092 | | 2014 | 10,685 | 6,068 | 7,343 | 6,068 | 0 | 11,614 | 11,612 | | 2015 | 11,060 | 6,332 | 7,658 | 6,332 | 0 | 11,953 | 11,950 | # 4.6. Other Considerations #### 4.6.1. Subarea Allocation In this assessment, we have adopted the hypothesis proposed by Alton et al. (1989) regarding the stock structure of Greenland turbot in the eastern Bering Sea and Aleutian Islands regions. Briefly, spawning is thought to occur throughout the adult range with post-larval settlement occurring on the shelf in shallow areas. The young fish on the shelf begin to migrate to the slope region at about age 4 or 5. In our treatment, the spawning stock includes adults in the Aleutian Islands and the eastern Bering Sea. In support of this hypothesis, we examined the length compositions from the Aleutian Islands surveys and found a lack of small Greenland turbot, which suggests that these fish migrate from other areas (Ianelli et al. 1993). Historically, the catches between the Aleutian Islands and eastern Bering Sea has varied (Table 4.8). Table 4.8. Estimated total Greenland turbot harvest by area, 1977-2001. | Year | EBS | Aleutians | Year | EBS | Aleutians | |------|--------|-----------|------|-------|-----------| | 1977 | 27,708 | 2,453 | 1991 | 4,075 | 3,636 | | 1978 | 37,423 | 4,766 | 1992 | 951 | 725 | | 1979 | 34,998 | 6,411 | 1993 | 5,125 | 3,323 | | 1980 | 48,856 | 3,697 | 1994 | 6,902 | 3,032 | | 1981 | 52,921 | 4,400 | 1995 | 5,713 | 2,086 | | 1982 | 45,805 | 6,317 | 1996 | 4,386 | 1,578 | | 1983 | 43,443 | 4,115 | 1997 | 6,594 | 943 | | 1984 | 21,317 | 1,803 | 1998 | 8,303 | 821 | | 1985 | 14,698 | 33 | 1999 | 5,204 | 423 | | 1986 | 7,710 | 2,154 | 2000 | 5,624 | 1,017 | | 1987 | 6,519 | 3,066 | 2001 | 4,197 | 1,046 | | 1988 | 6,064 | 1,044 | | | | | 1989 | 4,061 | 4,761 | | | | | 1990 | 7,702 | 2,494 | | | | Since we acknowledge having limited information on the movement and recruitment processes for this species and in the interest of harvesting the "stock" evenly, we recommend that the ABC be split between regions. Based on eastern Bering Sea slope survey estimates and Aleutian Islands surveys, the proportion of the adult biomass in the Aleutian Islands region has ranged from 24% to 49%. We therefore recommend the ABC for the Aleutian Islands be set 33% of the total ABC, with 67% allocated to the eastern Bering Sea. These rates represent the mid-point of the values observed from biomass estimates and give the following allocation: | Aleutian Islands | 1,960 mt | |--------------------|----------| | Eastern Bering Sea | 3,920 mt | | Total | 5,880 mt | ### 4.6.2. Ecosystem considerations Greenland turbot have undergone dramatic declines in the abundance of immature fish on the EBS shelf region compared to observations during the late 1970's. It may be that the high level of abundance during this period was unusual and the current level is typical for Greenland turbot life history pattern. Without further information on where different life-stages are currently residing, we can only
speculate on the plausibility of this scenario. Several major predators on the shelf were at relatively low stock sizes during the late 1970's (e.g., Pacific cod, Pacific halibut) and these increased to peak levels during the mid 1980's. Perhaps this shift in abundance has reduced the survival of juvenile Greenland turbot in the EBS shelf. Alternatively, the shift in recruitment patterns for Greenland turbot may be due to the documented environmental regime that occurred during the late 1970's. That is, perhaps the critical life history stages are subject to different oceanographic conditions that affect the abundance of juvenile Greenland turbot on the EBS shelf. Currently, the ecosystem group within the REFM Division is actively evaluating the pattern of mortality between different species in the EBS. One aspect of this work involves developing a multi-species model. Results from this work indicate that Greenland turbot is an important predator. The NMFS Auke Bay Lab staff continued to conduct a tagging study of Greenland turbot from the longline survey which they started in 1997. A Greenland turbot at large for over 16 years was recaptured on the Bering Sea slope area. This individual fish was tagged in the Sea of Okhotsk, further suggesting that Greenland turbot in the EBS/AI may not be a closed population. A figure showing this recapture and some others from recent longline survey releases is shown below in Fig. 4.12. Figure 4.12. Map showing the distribution of Greenland turbot tagged (stars) and released that were recaptured (line endpoints). # 4.7. Summary The management parameters of interest derived from this assessment are presented in Table 4.9. Table 4.9. Summary management values based on this assessment. Note that the fishing mortality rates assume 50% contribution from longline gear and 50% from trawl. | Management Parameter | Value | |-------------------------------------|-----------| | M | 0.18 yr-1 | | Approximate age at full recruitment | 10 years | | $F_{35\%}$ | 0.32 | | $F_{40\%}$ | 0.26 | | $B_{40\%}$ | 54,400 t | | Year 2003 female spawning biomass | 64,900 t | | $F_{ABC} = 5$ -year average | 0.10 | | Recommended ABC | 5,800 | | $F_{overfishing} = F_{35\%}$ | 0.32 | | Overfishing level | 17,800 t | # 4.8. Acknowledgments Mike Sigler and Chris Lunsford provided the summaries for the 1996-2001 longline survey data. # 4.9. References - AFS Publication, 1991. Common and Scientific Names of Fishes from the United States and Canada. American Fisheries Society Special Publication 20. C. Richard Robins, Chairman. 183 p. American Fisheries Society, 5410 Grosvenor Lane, Suite 110, Bethesda, MD 20814-2199. - Alton, M.S., R.G. Bakkala, G.E. Walters, and P.T. Munro. 1988. Greenland turbot *Reinhardtius hippoglossoides* of the eastern Bering Sea and Aleutian Islands region. NOAA Tech. Rep., NMFS 71, 31 p. - Beverton, R.J.H. and S.J. Holt. 1957. On the dynamics of exploited fish populations. Fish. Invest., Lond., Ser. 2, 19. - D'yakov, Yu. P. 1982. The fecundity of the Greenland turbot, *Reinhardtius hippoglossoides*, (Pleuronectidae), from the Bering Sea. J. Ichthyol. [Engl. Transl. Vopr. Ikhtiol] 22(5):59-64. - Harrison, R.C. 1993. Data Report: 1991 Bottom trawl survey of the Aleutian Islands Area. NOAA Tech. Memo. NMFS-AFSC-12. 144p. - Ianelli, J.N., T.K. Wilderbuer, and T.M. Sample. 1993. Stock assessment of Greenland turbot. In Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1994. Section 4. North Pacific Fishery Management Council, Anchorage, AK. - Ianelli, J.N., T.K. Wilderbuer, and T.M. Sample. 1994. Stock assessment of Greenland turbot. In Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1995. Section 4. North Pacific Fishery Management Council, Anchorage, AK. - Ianelli, J.N. and T. K. Wilderbuer. 1995. Greenland Turbot (*Reinhardtius hippoglossoides*) stock assessment and management in the Eastern Bering Sea. *In:* Proceedings of the International Symposium on North Pacific Flatfish. Alaska Sea Grant. AK-SG-95-04:407-441. - Ianelli, J.N., T.K. Wilderbuer, and T.M. Sample. 1999. Stock assessment of Greenland turbot. In Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 2000. Section 4. North Pacific Fishery Management Council, Anchorage, AK. - Kimura, D.K. 1988. Analyzing relative abundance indices with log-linear models. N. Am. Journ. Fish. Manage. 8:175-180. - Methot, R.D. 1990. Synthesis model: an adaptable framework for analysis of diverse stock assessment data. *In* Proceedings of the symposium on applications of stock assessment techniques to Gadids. L. Low [ed.]. Int. North Pac. Fish. Comm. Bull. 50: 259-277. - Wilderbuer, T.K. and T.M. Sample. 1992. Stock assessment of Greenland turbot. *In* Stock assessment and fishery evaluation document for groundfish resources in the Bering Sea/Aleutian Islands region as projected for 1993. Section 4. North Pacific Fishery Management Council, Anchorage, AK. - Zenger, H.H. and M.F. Sigler. 1992. Relative abundance of Gulf of Alaska sablefish and other groundfish based on NMFS longline surveys, 1988-90. U.S. Dept. of Comm. NOAA Tech. Memo. NMFS F/NWC-216. # 4.10. Figures Figure 4.1. Comparison of trawl (1960-2002) and longline (1977-2002) catches of Greenland turbot in the combined EBS/AI area. Figure 4.2. 2001 longline and trawl locations of successful Greenland turbot fishing operations based on NMFS observer data. Vertical lines represent the relative magnitude of Greenland turbot catch for each observed fishing operation. Figure 4.3. Relative CPUE from slope bottom trawl survey for 2002. Height of vertical bars is relative to CPUE by weight. Figure 4.4. Greenland turbot longline survey abundance trends for the 2 regions and as combined and used within the assessment model. Figure 4.5. Length frequency of Greenland turbot observed from the summer 2002 NMFS bottom trawl **shelf** survey. Figure 4.6. Length frequency of Greenland turbot observed from the summer 2002 NMFS bottom trawl **slope** survey. Figure 4.7. Fits to the different survey and fishery indices for Greenland turbot in the EBS/AI region. Figure 4.8 Total age 1+ biomass trend for the individual models of Greenland turbot in the EBS/AI region, 1965-2002 compared to Ianelli et al.'s (2001) assessment. Figure 4.9. Size-specific selectivity patterns for surveys and fisheries of Greenland turbot in the EBS/AI region. Thin lines represent differential selectivity of males. Figure 4.10. Estimated recruitment to age 1 (upper panel) and the observed stock-recruitment pattern (lower panel) of Greenland turbot in the EBS/AI region, 1970-2002. Figure 4.11. Stochastic trajectory of Greenland turbot female spawning biomass and projected levels for the maximum allowable fishing mortality rate under Amendment 56/56, Tier 3 and showing the mean expected value fishing under a constant *F* based on the recent 5-year average. These runs assume (conservatively) that the relative fishing mortality rates between longline and trawl fishing gear are equal. The dotted lines represent the upper and lower 90% confidence limits.